Deep Neuro-Fuzzy Systems with Python PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Neuro-Fuzzy Systems with Python PDF full book. Access full book title Deep Neuro-Fuzzy Systems with Python by Himanshu Singh. Download full books in PDF and EPUB format.

Deep Neuro-Fuzzy Systems with Python

Deep Neuro-Fuzzy Systems with Python PDF Author: Himanshu Singh
Publisher: Apress
ISBN: 1484253612
Category : Computers
Languages : en
Pages : 260

Get Book

Book Description
Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python. You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them. In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications. What You’ll Learn Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inferenceReview neural networks, back propagation, and optimizationWork with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations Apply Python implementations of deep neuro fuzzy system Who This book Is For Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.

Deep Neuro-Fuzzy Systems with Python

Deep Neuro-Fuzzy Systems with Python PDF Author: Himanshu Singh
Publisher: Apress
ISBN: 1484253612
Category : Computers
Languages : en
Pages : 260

View

Book Description
Gain insight into fuzzy logic and neural networks, and how the integration between the two models makes intelligent systems in the current world. This book simplifies the implementation of fuzzy logic and neural network concepts using Python. You’ll start by walking through the basics of fuzzy sets and relations, and how each member of the set has its own membership function values. You’ll also look at different architectures and models that have been developed, and how rules and reasoning have been defined to make the architectures possible. The book then provides a closer look at neural networks and related architectures, focusing on the various issues neural networks may encounter during training, and how different optimization methods can help you resolve them. In the last section of the book you’ll examine the integrations of fuzzy logics and neural networks, the adaptive neuro fuzzy Inference systems, and various approximations related to the same. You’ll review different types of deep neuro fuzzy classifiers, fuzzy neurons, and the adaptive learning capability of the neural networks. The book concludes by reviewing advanced neuro fuzzy models and applications. What You’ll Learn Understand fuzzy logic, membership functions, fuzzy relations, and fuzzy inferenceReview neural networks, back propagation, and optimizationWork with different architectures such as Takagi-Sugeno model, Hybrid model, genetic algorithms, and approximations Apply Python implementations of deep neuro fuzzy system Who This book Is For Data scientists and software engineers with a basic understanding of Machine Learning who want to expand into the hybrid applications of deep learning and fuzzy logic.

Machine Learning Guide for Oil and Gas Using Python

Machine Learning Guide for Oil and Gas Using Python PDF Author: Hoss Belyadi
Publisher: Gulf Professional Publishing
ISBN: 0128219300
Category : Computers
Languages : en
Pages : 476

View

Book Description
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. Helps readers understand how open-source Python can be utilized in practical oil and gas challenges Covers the most commonly used algorithms for both supervised and unsupervised learning Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Introduction to Fuzzy Logic

Introduction to Fuzzy Logic PDF Author: James K. Peckol
Publisher: John Wiley & Sons
ISBN: 1119772613
Category : Technology & Engineering
Languages : en
Pages : 304

View

Book Description
INTRODUCTION TO FUZZY LOGIC Learn more about the history, foundations, and applications of fuzzy logic in this comprehensive resource by an academic leader Introduction to Fuzzy Logic delivers a high-level but accessible introduction to the rapidly growing and evolving field of fuzzy logic and its applications. Distinguished engineer, academic, and author James K. Peckol covers a wide variety of practical topics, including the differences between crisp and fuzzy logic, the people and professionals who find fuzzy logic useful, and the advantages of using fuzzy logic. While the book assumes a solid foundation in embedded systems, including basic logic design, and C/C++ programming, it is written in a practical and easy-to-read style that engages the reader and assists in learning and retention. The author includes introductions of threshold and perceptron logic to further enhance the applicability of the material contained within. After introducing readers to the topic with a brief description of the history and development of the field, Introduction to Fuzzy Logic goes on to discuss a wide variety of foundational and advanced topics, like: A review of Boolean algebra, including logic minimization with algebraic means and Karnaugh maps A discussion of crisp sets, including classic set membership, set theory and operations, and basic classical crisp set properties A discussion of fuzzy sets, including the foundations of fuzzy set logic, set membership functions, and fuzzy set properties An analysis of fuzzy inference and approximate reasoning, along with the concepts of containment and entailment and relations between fuzzy subsets Perfect for mid-level and upper-level undergraduate and graduate students in electrical, mechanical, and computer engineering courses, Introduction to Fuzzy Logic covers topics included in many artificial intelligence, computational intelligence, and soft computing courses. Math students and professionals in a wide variety of fields will also significantly benefit from the material covered in this book.

Intelligent Projects Using Python

Intelligent Projects Using Python PDF Author: Santanu Pattanayak
Publisher: Packt Publishing Ltd
ISBN: 1788994868
Category : Computers
Languages : en
Pages : 342

View

Book Description
This book includes 9 projects on building smart and practical AI-based systems. These projects cover solutions to different domain-specific problems in healthcare, e-commerce and more. With this book, you will apply different machine learning and deep learning techniques and learn how to build your own intelligent applications for smart ...

Current Problems and Ways of Industry Development: Equipment and Technologies

Current Problems and Ways of Industry Development: Equipment and Technologies PDF Author: Olga G. Shakirova
Publisher: Springer Nature
ISBN: 3030694216
Category : Technology & Engineering
Languages : en
Pages : 1068

View

Book Description
This book is a reflection of the modern scientific view of current and future problems and prospects of industry development: equipment and technologies. It combines the results of advanced researches of industry development: equipment and technologies in the field of various sciences – both technical and humanitarian, the synthesis of which allowed forming a holistic meta-scientific concept of industry development: equipment and technologies. The book consists of two parts. The first part reflects technical problems and ways of industry development: equipment and technologies. It examines the promising technologies for modern industrial development, the technogenic factors of neo-industrialization in the context of digital economy, strategic guidelines for the industry development: equipment and technologies from the standpoint of sustainable development, as well as integration mechanisms for the industry development: equipment and technologies, and scientific support for their activation. In the second part, organizational and managerial problems and ways of industry development: equipment and technologies are disclosed. The industry development: equipment and technologies were studied: a view from the standpoint of economics and management, legal barriers to the industry development: equipment: and technologies and the prospects for overcoming them, the impact of globalization on the industry development: equipment: and technologies and recommendations for managing internationalization, as well as social issues of industry development: equipment and technologies in the aspect of human resource’s training and management. The book combines the best works presented at the International Research and Practice Conference" Actual Problems and Ways of Industry Development: Equipment and Technologies", organized by the Komsomolsk-on-Amur State University and the Institute of Scientific Communications and held in Komsomolsk-on-Amur (Russia) September 28–October 1, 2020. The target audience of the book is academic scientists studying issues of industry development: equipment and technologies, as well as industrial enterprises and government regulators of industry development: equipment and technologies.

Deep Neural Networks for Multimodal Imaging and Biomedical Applications

Deep Neural Networks for Multimodal Imaging and Biomedical Applications PDF Author: Suresh, Annamalai
Publisher: IGI Global
ISBN: 1799835928
Category : Computers
Languages : en
Pages : 294

View

Book Description
The field of healthcare is seeing a rapid expansion of technological advancement within current medical practices. The implementation of technologies including neural networks, multi-model imaging, genetic algorithms, and soft computing are assisting in predicting and identifying diseases, diagnosing cancer, and the examination of cells. Implementing these biomedical technologies remains a challenge for hospitals worldwide, creating a need for research on the specific applications of these computational techniques. Deep Neural Networks for Multimodal Imaging and Biomedical Applications provides research exploring the theoretical and practical aspects of emerging data computing methods and imaging techniques within healthcare and biomedicine. The publication provides a complete set of information in a single module starting from developing deep neural networks to predicting disease by employing multi-modal imaging. Featuring coverage on a broad range of topics such as prediction models, edge computing, and quantitative measurements, this book is ideally designed for researchers, academicians, physicians, IT consultants, medical software developers, practitioners, policymakers, scholars, and students seeking current research on biomedical advancements and developing computational methods in healthcare.

Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition PDF Author: Alexandros Iosifidis
Publisher: Academic Press
ISBN: 0323885721
Category : Computers
Languages : en
Pages : 634

View

Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. Presents deep learning principles and methodologies Explains the principles of applying end-to-end learning in robotics applications Presents how to design and train deep learning models Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more Uses robotic simulation environments for training deep learning models Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2021

Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2021 PDF Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 303089701X
Category :
Languages : en
Pages :

View

Book Description


Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes)

Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) PDF Author: Cheng-few Lee
Publisher: World Scientific
ISBN: 9811202400
Category : Business & Economics
Languages : en
Pages : 5056

View

Book Description
This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.

Optimization Using Evolutionary Algorithms and Metaheuristics

Optimization Using Evolutionary Algorithms and Metaheuristics PDF Author: Kaushik Kumar
Publisher: CRC Press
ISBN: 1000537145
Category : Technology & Engineering
Languages : en
Pages : 136

View

Book Description
Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering