Computer Vision – ECCV 2020 Workshops

Computer Vision – ECCV 2020 Workshops PDF Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030670708
Category : Computers
Languages : en
Pages : 762

View

Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part III includes the Advances in Image Manipulation Workshop and Challenges.

Computer Vision – ECCV 2020 Workshops

Computer Vision – ECCV 2020 Workshops PDF Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030682382
Category : Computers
Languages : en
Pages : 752

View

Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part V includes: The 16th Embedded Vision Workshop; Real-World Computer Vision from Inputs with Limited Quality (RLQ); The Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security (CV-COPS 2020); The Visual Object Tracking Challenge Workshop (VOT 2020); and Video Turing Test: Toward Human-Level Video Story Understanding.

Computer Vision – ECCV 2020 Workshops

Computer Vision – ECCV 2020 Workshops PDF Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030668231
Category : Computers
Languages : en
Pages : 755

View

Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part IV focusses on advances in image manipulation; assistive computer vision and robotics; and computer vision for UAVs.

Computer Vision – ECCV 2020 Workshops

Computer Vision – ECCV 2020 Workshops PDF Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030664155
Category : Computers
Languages : en
Pages : 797

View

Book Description
The 5-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part I focusses on adversarial robustness in the real world; bioimage computation; egocentric perception, interaction and computing; eye gaze in VR, AR, and in the wild; TASK-CV workshop and VisDA challenge; and bodily expressed emotion understanding.

Computer Vision – ECCV 2020 Workshops

Computer Vision – ECCV 2020 Workshops PDF Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030654141
Category : Computers
Languages : en
Pages : 560

View

Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part VI focusses on reassessing the evaluation of object detection; computer vision problems in plant phenotyping; fair face recognition and analysis; and perception through structured generative models.

Computer Vision – ECCV 2020 Workshops

Computer Vision – ECCV 2020 Workshops PDF Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030660966
Category : Computers
Languages : en
Pages : 759

View

Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part II focusses on commands for autonomous vehicles; computer vision for ART analysis; sign language recognition, translation and production; visual inductive priors for data-efficient deep learning; 3D poses in the wild challenge; map-based localization for autonomous driving; recovering 6D object pose; and shape recovery from partial textured 3D scans.

Artificial Intelligence in Surgery: Understanding the Role of AI in Surgical Practice

Artificial Intelligence in Surgery: Understanding the Role of AI in Surgical Practice PDF Author: Daniel A. Hashimoto
Publisher: McGraw Hill Professional
ISBN: 1260452743
Category : Medical
Languages : en
Pages : 352

View

Book Description
Build a solid foundation in surgical AI with this engaging, comprehensive guide for AI novices Machine learning, neural networks, and computer vision in surgical education, practice, and research will soon be de rigueur. Written for surgeons without a background in math or computer science, Artificial Intelligence in Surgery provides everything you need to evaluate new technologies and make the right decisions about bringing AI into your practice. Comprehensive and easy to understand, this first-of-its-kind resource illustrates the use of AI in surgery through real-life examples. It covers the issues most relevant to your practice, including: Neural Networks and Deep Learning Natural Language Processing Computer Vision Surgical Education and Simulation Preoperative Risk Stratification Intraoperative Video Analysis OR Black Box and Tracking of Intraoperative Events Artificial Intelligence and Robotic Surgery Natural Language Processing for Clinical Documentation Leveraging Artificial Intelligence in the EMR Ethical Implications of Artificial Intelligence in Surgery Artificial Intelligence and Health Policy Assessing Strengths and Weaknesses of Artificial Intelligence Research Finally, the appendix includes a detailed glossary of terms and important learning resources and techniques―all of which helps you interpret claims made by studies or companies using AI.

Person Re-Identification with Limited Supervision

Person Re-Identification with Limited Supervision PDF Author: Rameswar Panda
Publisher: Morgan & Claypool Publishers
ISBN: 1636392261
Category : Computers
Languages : en
Pages : 98

View

Book Description
Person re-identification is the problem of associating observations of targets in different non-overlapping cameras. Most of the existing learning-based methods have resulted in improved performance on standard re-identification benchmarks, but at the cost of time-consuming and tediously labeled data. Motivated by this, learning person re-identification models with limited to no supervision has drawn a great deal of attention in recent years. In this book, we provide an overview of some of the literature in person re-identification, and then move on to focus on some specific problems in the context of person re-identification with limited supervision in multi-camera environments. We expect this to lead to interesting problems for researchers to consider in the future, beyond the conventional fully supervised setup that has been the framework for a lot of work in person re-identification. Chapter 1 starts with an overview of the problems in person re-identification and the major research directions. We provide an overview of the prior works that align most closely with the limited supervision theme of this book. Chapter 2 demonstrates how global camera network constraints in the form of consistency can be utilized for improving the accuracy of camera pair-wise person re-identification models and also selecting a minimal subset of image pairs for labeling without compromising accuracy. Chapter 3 presents two methods that hold the potential for developing highly scalable systems for video person re-identification with limited supervision. In the one-shot setting where only one tracklet per identity is labeled, the objective is to utilize this small labeled set along with a larger unlabeled set of tracklets to obtain a re-identification model. Another setting is completely unsupervised without requiring any identity labels. The temporal consistency in the videos allows us to infer about matching objects across the cameras with higher confidence, even with limited to no supervision. Chapter 4 investigates person re-identification in dynamic camera networks. Specifically, we consider a novel problem that has received very little attention in the community but is critically important for many applications where a new camera is added to an existing group observing a set of targets. We propose two possible solutions for on-boarding new camera(s) dynamically to an existing network using transfer learning with limited additional supervision. Finally, Chapter 5 concludes the book by highlighting the major directions for future research.

Visual Domain Adaptation in the Deep Learning Era

Visual Domain Adaptation in the Deep Learning Era PDF Author: Gabriela Csurka
Publisher: Morgan & Claypool Publishers
ISBN: 163639342X
Category : Computers
Languages : en
Pages : 190

View

Book Description
Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance/b>. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.

Visual Domain Adaptation in the Deep Learning Era

Visual Domain Adaptation in the Deep Learning Era PDF Author: Gabriela Csurka
Publisher: Synthesis Lectures on Computer
ISBN: 9781636393414
Category : Computers
Languages : en
Pages : 190

View

Book Description
Solving problems with deep neural networks typically relies on massive amounts of labeled training data to achieve high performance/b>. While in many situations huge volumes of unlabeled data can be and often are generated and available, the cost of acquiring data labels remains high. Transfer learning (TL), and in particular domain adaptation (DA), has emerged as an effective solution to overcome the burden of annotation, exploiting the unlabeled data available from the target domain together with labeled data or pre-trained models from similar, yet different source domains. The aim of this book is to provide an overview of such DA/TL methods applied to computer vision, a field whose popularity has increased significantly in the last few years. We set the stage by revisiting the theoretical background and some of the historical shallow methods before discussing and comparing different domain adaptation strategies that exploit deep architectures for visual recognition. We introduce the space of self-training-based methods that draw inspiration from the related fields of deep semi-supervised and self-supervised learning in solving the deep domain adaptation. Going beyond the classic domain adaptation problem, we then explore the rich space of problem settings that arise when applying domain adaptation in practice such as partial or open-set DA, where source and target data categories do not fully overlap, continuous DA where the target data comes as a stream, and so on. We next consider the least restrictive setting of domain generalization (DG), as an extreme case where neither labeled nor unlabeled target data are available during training. Finally, we close by considering the emerging area of learning-to-learn and how it can be applied to further improve existing approaches to cross domain learning problems such as DA and DG.